
Lecture 37

Computational
Electromagnetics, Numerical
Methods

37.1 Computational Electromagnetics and Numerical Meth-
ods

Numerical methods exploit the blinding speed of modern digital computers to perform calcu-
lations, and hence to solve large system of equations. These equations are partial differential
equations or integral equations. When these methods are applied to solving Maxwell’s equa-
tions and related equations, the field is known as computational electromagnetics.

Maxwell’s equations are a form of partial differential equations (PDE). Boundary con-
ditions have to be stipulated for these PDE’s, and the solution can be sought by solving a
boundary value problem (BVP). In solving PDE’s the field in every point in space is solved
for.

On the other hand, the Green’s function method can be used to convert a PDE into an
integral equation (IE). Then the fields are expressed in terms of the sources, and the sources
are the unknowns to be solved. Sources in IEs are supported by a finite part of space, for
instance on the surface of the scatterer, whereas fields from PDEs permeate all of space.
Therefore, sources in IEs can be represented by a smaller set of unknowns, and therefore, are
easier to solve for compared to fields in PDEs.

37.1.1 Examples of Differential Equations

An example of differential equations written in terms of sources are the scalar wave equation:

(∇2 + k2)φ(r) = Q(r), (37.1.1)
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374 Electromagnetic Field Theory

An example of vector differential equation for vector electromagnetic field is

∇× µ−1 · ∇ ×E(r)− ω2ε ·E(r) = iωJ(r) (37.1.2)

These equations are linear equations. They have one commonality, i.e., they can be
abstractly written as

L f = g (37.1.3)

where L is the differential operator which is linear, and f is the unknown, and g is the
driving source. Differential equations, or partial differential equations, as mentioned before,
have to be solved with boundary conditions. Otherwise, there is no unique solution to these
equations.

In the case of the scalar wave equation (37.1.1), L = (∇2 + k2) is a differential operator.
In the case of the electromagnetic vector wave equation (37.1.2), L = (∇×µ−1 ·∇×)−ω2ε·.
Furthermore, f will be φ(r) for the scalar wave equation (37.1.1), while it will be E(r) in the
case of vector wave equation for an electromagnetic system (37.1.2). The g on the right-hand
side can represent Q in (37.1.1) or iωJ(r) in (37.1.2).

37.1.2 Examples of Integral Equations

This course is replete with PDE’s, but we have not come across too many integral equations.
Therefore, we shall illustrate the derivation of some integral equations. Since the acoustic
wave problem is homomorphic to the electromagnetic wave problem, we will illustrate the
derivation of integral equation of scattering using acoustic wave equation.1

The surface integral equation method is rather popular in a number of applications, be-
cause it employs a homogeneous-medium Green’s function which is simple in form, and the
unknowns reside on a surface rather than in a volume. In this section, the surface integral
equations2 for scalar and will be studied first. Then, the volume integral equation will be
discussed next.

Surface Integral Equations

In an integral equation, the unknown to be sought is embedded in an integral. An integral
equation can be viewed as an operator equation as well, just as are differential equations. We
shall see how such integral equations with only surface integrals are derived, using the scalar
wave equation.

1The cases of electromagnetic wave equations can be found in Chew, Waves and Fields in Inhomogeneous
Media [34].

2These are sometimes called boundary integral equations [208,209].
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Figure 37.1: A two-region problem can be solved with a surface integral equation.

Consider a scalar wave equation for a two-region problem as shown in Figure 37.1. In
region 1, the governing equation for the total field is

(∇2 + k2
1)φ1(r) = Q(r), (37.1.4)

For simplicity, we will assume that the scatterer is impenetrable, meaning that the field in
region 2 is zero. Therefore, we need only define Green’s functions for regions 1 to satisfy the
following equations:

(∇2 + k2
1) g1(r, r′) = −δ(r− r′), (37.1.5)

The derivation here is similar to the that of Huygens’ principle. On multiplying Equation
(37.1.1) by g1(r, r′) and Equation (37.1.5) by φ1(r), subtracting the two resultant equations,
and integrating over region 1, we have, for r′ ∈ V1,

�

V1

dV [g1(r, r′)∇2φ1(r)− φ1(r)∇2g1(r, r′)]

=

�

V1

dV g1(r, r′)Q(r) + φ1(r′), r′ ∈ V1. (37.1.6)

Since ∇ · (g∇φ − φ∇g) = g∇2φ − φ∇2g, by applying Gauss’ theorem, the volume integral
on the left-hand side of (37.1.6) becomes a surface integral over the surface bounding V1.
Consequently,3

−
�

S+Sinf

dS n̂ · [g1(r, r′)∇φ1(r)− φ1(r)∇g1(r, r′)]

= −φinc(r′) + φ1(r′), r′ ∈ V1. (37.1.7)

3The equality of the volume integral on the left-hand side of (37.1.6) and the surface integral on the
left-hand side of (37.1.7) is also known as Green’s theorem.
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In the above, we have let

φinc(r
′) = −

�

V1

dV g1(r, r′)Q(r), (37.1.8)

since it is the incident field generated by the source Q(r).

Note that up to this point, g1(r, r′) is not explicitly specified, as long as it is a solution of
(37.1.5). A simple choice for g1(r, r′) that satisfies the radiation condition is

g1(r, r′) =
eik1|r−r

′|

4π|r− r′|
, (37.1.9)

It is the unbounded, homogeneous medium scalar Green’s function. In this case, φinc(r) is
the incident field generated by the source Q(r) in the absence of the scatterer. Moreover, the
integral over Sinf vanishes when Sinf →∞ by virtue of the radiation condition. Then, after
swapping r and r′, we have

φ1(r) = φinc(r)−
�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)], r ∈ V1. (37.1.10)

But if r′ /∈ V1 in (37.1.6), the second term, φ1(r), on the right-hand side of (37.1.6) would be
zero, for r′ would be in V2 where the integration is not performed. Therefore, we can write
(37.1.10) as

if r ∈ V1, φ1(r)
if r ∈ V2, 0

}
= φinc(r)−

�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)]. (37.1.11)

The above equation is evocative of Huygens’ principle. It says that when the observation
point r is in V1, then the total field φ1(r) consists of the incident field, φinc(r), and the
contribution of field due to surface sources on S, which is the second term on the right-hand
side of (37.1.11). But if the observation point is in V2, then the surface sources on S generate
a field that exactly cancels the incident field φinc(r), making the total field in region 2 zero.
This fact is the core of the extinction theorem as shown in Figure 37.2 (see Born and Wolf
1980).

In (37.1.11), n̂ ·∇φ1(r) and φ1(r) act as surface sources. Moreover, they are impressed on
S, creating a field in region 2 that cancels exactly the incident field in region 2 (see Figure
37.2).
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Figure 37.2: The illustration of the extinction theorem.

Applying the extinction theorem, integral equations can now be derived. So, using the
lower parts of Equations (37.1.11), we have

φinc(r) =

�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)], r ∈ V2, (37.1.12)

The integral equations above still has two independent unknowns, φ1 and n̂ · ∇φ1. Next,
boundary conditions can be used to eliminate one of these two unknowns.

An acoustic scatterer which is impenetrable either has a hard surface boundary condition
where normal velocity is zero, or it has soft surface where the pressure is zero (also called a
pressure release surface). Since the force or the velocity of the particle is proportional to the
∇φ, a hard surface will have n̂ · ∇φ1 = 0, or a homogeneous Neumann boundary condition,
while a soft surface will have φ1 = 0, a homogeneous Dirichlet boundary condition.

φinc(r) =

�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)], r ∈ V2, soft boundary condition

(37.1.13)

φinc(r) = −
�

S

dS′ φ1(r′)∇′g1(r, r′], r ∈ V2, hard boundary condition

(37.1.14)

More complicated surface integral equations (SIEs) for penetrable scatterers, as well as
vector surface integral equations for the electromagnetics cases are derived in Chew, Waves
and Fields in Inhomogeneous Media [34,210]. Also, there is another class of integral equations
called volume integral equations (VIEs) [211]. They are also derived in [34].

Nevertheless, all the linear integral equations can be unified under one notation:

L f = g (37.1.15)

where L is a linear operator. This is similar to the differential equation case. The difference
is that the unknown f represents the source of the problem, while g is the incident field
impinging on the scatterer or object. Furthermore, f does not need to satisfy any boundary
condition, since the field radiated via the Green’s function satisfies the radiation condition.
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37.2 Subspace Projection Methods

Several operator equations have been derived in the previous sections. They are all of the
form

L f = g (37.2.1)

37.2.1 Function as a Vector

In the above, f is a functional vector which is the analogy of the vector f in matrix theory
or linear algebra. In linear algebra, the vector f is of length N in an N dimensional space. It
can be indexed by a set of countable index, say i, and we can described such a vector with
N numbers such as fi, i = 1, . . . , N explicitly. This is shown in Figure 37.3(a).

A function f(x), however, can be thought of as being indexed by x in the 1D case.
However, the index in this case is a continuum, and countably infinite. Hence, it corresponds
to a vector of infinite dimension and it lives in an infinite dimensional space.4

To make such functions economical in storage, for instance, we replace the function f(x)
by its sampled values at N locations, such that f(xi), i = 1, . . . , N . Then the values of the
function in between the stored points f(xi) can be obtained by interpolation. Therefore, a
function vector f(x), even though it is infinite dimensional, can be approximated by a finite
length vector, f . This concept is illustrated in Figure 37.3(b) and (c). This concept can be
generalized to a function of 3D space f(r). If r is sampled over a 3D volume, it can provide
an index to a vector fi = f(ri), and hence, f(r) can be thought of as a vector as well.

4When these functions are square integrable implying finite “energy”, these infinite dimensional spaces are
called Hilbert spaces.
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Figure 37.3: A function can be thought of as a vector.

37.2.2 Operator as a Map

An operator like L above can be thought of as a map or a transformation. It maps a function
f defined in a Hilbert space V to g defined in another Hilbert space W . Mathematically, this
is written as

L : V →W (37.2.2)

Indicating that L is a map of vectors in the space V to the space W . Here, V is also called
the domain space (or domain) of L while W is the range space (or range) of L .

37.2.3 Approximating Operator Equations with Matrix Equations

One main task of numerical method is first to approximate an operator equation L f = g by
a matrix equation L · f = g. To convert the above, we first let

f ∼=
N∑
n=1

anfn = g (37.2.3)
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In the above, fn, n, . . . , N are known functions called basis functions. Now, an’s are the
new unknowns to be sought. Also the above is an approximation, and the accuracy of the
approximation depends very much on the original function f . A set of very popular basis
functions are functions that form a piece-wise linear interpolation of the function from its
nodes. These basis functions are shown in Figure 37.4.

Figure 37.4: Examples of basis function in (a) one dimension, (b) two dimension. Each of
these functions are define over a finite domain. Hence, they are also called sub-domain basis
functions.

Upon substituting (37.2.3) into (37.2.1), we obtain

N∑
n=1

anL fn = g (37.2.4)

Then, multiplying (37.2.4) by wm and integrate over the space that wm(r) is defined, then
we have

N∑
n=1

an 〈wm,L fn〉 = 〈wm, g〉 ,m = 1, . . . , N (37.2.5)

In the above, the inner product is defined as

〈f1, f2〉 =

�
drf1(r)f2(r) (37.2.6)

where the integration is over the support of the functions, or the space over which the functions
are defined.5 For PDEs these functions are defined over a 3D space, while in SIEs, these

5This is known as the reaction inner product [34,47,120]. As oppose to most math and physics literature,
the energy inner product is used [120].
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functions are defined over a surface. In a 1D problems, these functions are defined over a 1D
space.

The functions wm,m = 1, . . . , N is known as the weighting functions or testing functions.
The testing functions should be chosen so that they can approximate well a function that
lives in the range space W of the operator L . Such set of testing functions lives in the dual
space of the range space. For example, if fr lives in the range space of the operator L , the
set of function fd, such that the inner product 〈fd, fr〉 exists, forms the dual space of W .

The above is a matrix equation of the form

L · a = g (37.2.7)

where [
L
]
mn

= 〈wm,L fn〉
[a]n = an, [g]m = 〈wm, g〉

(37.2.8)

What has effectively happened here is that given an operator L that maps a function that lives
in an infinite dimensional Hilbert space V , to another function that lives in another infinite
dimensional Hilbert space W , via the operator equation L f = g, we have approximated
the Hilbert spaces with finite dimensional spaces (subspaces), and finally, obtain a finite
dimensional matrix equation that is the representation of the original infinite dimensional
operator equation.

In the above, L is the matrix representation of the operator L in the subspaces, and a
and g are the vector representations of f and g, respectively, in their respective subspaces.

When such a method is applied to integral equations, it is usually called the method
of moments (MOM). (Surface integral equations are also called boundary integral equations
(BIEs) in other fields [209]. When finite discrete basis are used to represent the surface
unknowns, it is also called the boundary element method (BEM) [212]. But when this method
is applied to solve PDEs, it is called the finite element method (FEM) [213–216], which is a
rather popular method due to its simplicity.

37.2.4 Mesh Generation

In order to approximate a function defined on an arbitrary shaped surface or volume by
sum of basis functions, it is best to mesh (tessellate or discretize) the surface and volume by
meshes. In 2D, all shapes can be tessellated by unions of triangles, while a 3D volume can be
meshed (tessellated) by unions of tetrahedrons. Such meshes are used not only in CEM, but
in other fields such as solid mechanics. Hence, there are many commercial software available
to generate sophisticated meshes.

When a surface is curved, or of arbitrary shape, it can be meshed by union of triangles as
shown in Figure 37.5. When a volume is of arbitrary shape of a volume is around an arbitrary
shape object, it can be meshed by tetrahedrons as shown in Figure 37.6. Then basis functions
are defined to interpolate the field between nodal values or values defined on the edges of a
triangle or a tetrahedron.
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Figure 37.5: An arbitrary surface can be meshed by a union of triangles.

Figure 37.6: A volume region can be meshed by a union of tetrahedra. But the surface of the
aircraft is meshed with a union of trianlges (courtesy of gmsh.info).

37.3 Solving Matrix Equation by Optimization

When a matrix system get exceedingly large, it is preferable that a direct inversion of the
matrix equation not performed. Direct inversions (e.g., using Gaussian elimination [217]
or Kramer’s rule [218]) have computational complexity6 of O(N3), and requiring storage of
O(N2). Hence, when N is large, other methods have to be sought.

To this end, it is better to convert the solving of a matrix equation into an optimiza-
tion problem. These methods can be designed so that a much larger system can be solved
with a digital computer. Optimization problem results in finding the stationary point of a
functional.7 First, we will figure out how to find such a functional.

Consider a matrix equation given by

L · f = g (37.3.1)

6The scaling of computer time with respect to the number of unknowns (degrees of freedom) is known in
the computer parlance as computational complexity.

7Functional is usually defined as a function of a function [34, 43]. Here, we include a function of a vector
to be a functional as well.
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For simplicity, we consider L as a symmetric matrix.8 Then one can define a functional

I = f t · L · f − 2f t · g (37.3.2)

Such a functional is called a quadratic functional because it is analogous to I = Lx2 − 2xg,
which is quadratic, in its simplest 1D rendition.

Taking the first variation with respect to f , namely, we let f = fo+δf , and find the leading
order approximation of the functional. Therefore, one gets

δI = δf t · L · fo + f to · L · δf − 2δf t · g (37.3.3)

If L is symmetric, the first two terms are the same, and the above becomes

δI = 2δf t · L · fo − 2δf t · g (37.3.4)

For fo to be the optimal point or the stationary point, then its first variation has to be zero,
or that δI = 0. Thus we conclude that

L · fo = g (37.3.5)

Hence, the optimal point to the functional I in (37.3.2) is the solution to (37.3.1).

Such method, when applied to an infinite dimensional Hilbert space problem, is called
variational method, but the main ideas are similar. The wonderful idea about such a method
is that instead of doing direct inversion, one can search for the optimal point or stationary
point of the quadratic functional using gradient search or gradient descent methods or some
optimization method.

37.3.1 Gradient of a Functional

It turns out that the gradient of a quadratic functional can be found quite easily. Also it
is cheaper to computer the gradient of a functional than to find the inverse of a matrix
operator. To do this, it is better to write out functional using index (or indicial, or Einstein)
notation [219]. In this notation, the functional first variation δI in (37.3.4) becomes

δI = 2δfjLijfi − 2δfjgj (37.3.6)

In the above, we neglect to distinguish between fo and f and f represents the optimal point
is implied. Also, in this notation, the summation symbol is dropped, and summations over
repeated indices are implied. In this notation, it is easier to see what a functional derivative
is. We can differentiate the above with respect to fj easily to arrive at

∂I

∂fj
= 2Lijfi − 2gj (37.3.7)

8Functional for the asymmetric case can be found in Chew, Waves and Fields in Inhomogeneous Media,
Chapter 5 [34].
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Notice that the remaining equation has one index j remaining in index notation, meaning
that it is a vector equation. We can reconstitute the above using our more familiar matrix
notation that

∇f I = 2L · f − 2g (37.3.8)

The left-hand side is a notation for the gradient of a functional in a multi-dimensional space
defined by f , and the right-hand side is the expression for calculating this gradient. One needs
only to perform a matrix-vector product to find this gradient. Hence, the computational
complexity of finding this gradient is O(N2) at worst, and O(N) for many sparse matrices.
In a gradient search method, such a gradient is calculated repeated until the optimal point is
found. Such methods are called iterative methods.

If the optimal point can be found in Niter iterations, then the CPU time scales as NiterN
α

where 1 < α < 2. There is a clever gradient search algorithm, called the conjugate gradient
method that can find the optimal point in Niter in exact arithmetics. In many gradient search
methods, Niter � N resulting in great savings in computer time.

What is more important is that this method does not require the storage of the matrix L,
but a computer code that produces the vector go = L · f as an output, with f as an input.
Both f and go require only O(N) memory storage. Such methods are called matrix-free
methods. Even when L is a dense matrix, but is the matrix representation of some Green’s
function, fast methods now exist to perform the dense matrix-vector product in O(N logN)
operations.9

The value I is also called the cost function, and its minimum is sought in the seeking of
the solution by gradient search methods. Detail discussion of these methods is given in [220].
Figure 37.7 shows the contour plot of a cost function in 2D. When the condition number10

of the matrix L is large (implying that the matrix is ill-conditioned), the contour plot will
resemble a deep valley. And hence, the gradient search method will tend to zig-zag along the
way as it finds the solution. Therefore, convergence is slow for matrices with large condition
numbers

9Chew et al, Fast and Efficient Algorithms in CEM [9].
10This is the ratio of the largest eigenvalue of the matrix to its smallest eigenvalue.
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Figure 37.7: Plot of a 2D cost function for an ill-conditioned system (courtesy of Numerical
Recipe [220]).

Figure 37.8 shows a cartoon picture in 2D of the histories of different search paths from a
machine-learning example where a cost functional similar to I has to be minimized. Finding
the optimal point or the minimum point of a general functional is still a hot topic of research:
it is important in artificial intelligence.

Figure 37.8: Gradient search or gradient descent method is finding an optimal point (courtesy
of Y. Ioannou: https://blog.yani.io/sgd/).
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387



388 Electromagnetic Field Theory
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mathematischen physik,” Mathematische annalen, vol. 100, no. 1, pp. 32–74, 1928.

[205] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,”
Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994.

[206] W. C. Chew and W. H. Weedon, “A 3d perfectly matched medium from modified
maxwell’s equations with stretched coordinates,” Microwave and optical technology let-
ters, vol. 7, no. 13, pp. 599–604, 1994.

[207] W. C. Chew, J. Jin, and E. Michielssen, “Complex coordinate system as a generalized
absorbing boundary condition,” in IEEE Antennas and Propagation Society Interna-
tional Symposium 1997. Digest, vol. 3. IEEE, 1997, pp. 2060–2063.



Computational Electromagnetics, Numerical Methods 399

[208] W. C. H. McLean, Strongly elliptic systems and boundary integral equations. Cambridge
University Press, 2000.

[209] G. C. Hsiao and W. L. Wendland, Boundary integral equations. Springer, 2008.

[210] K. F. Warnick, Numerical analysis for electromagnetic integral equations. Artech
House, 2008.

[211] M. M. Botha, “Solving the volume integral equations of electromagnetic scattering,”
Journal of Computational Physics, vol. 218, no. 1, pp. 141–158, 2006.

[212] P. K. Banerjee and R. Butterfield, Boundary element methods in engineering science.
McGraw-Hill London, 1981, vol. 17.

[213] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Zhu, The finite element method.
McGraw-Hill London, 1977, vol. 3.

[214] J.-F. Lee, R. Lee, and A. Cangellaris, “Time-domain finite-element methods,” IEEE
Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 430–442, 1997.

[215] J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite element method electromagnetics:
antennas, microwave circuits, and scattering applications. John Wiley & Sons, 1998,
vol. 6.

[216] J.-M. Jin, The finite element method in electromagnetics. John Wiley & Sons, 2015.

[217] G. Strang, Linear algebra and its applications. Academic Press, 1976.

[218] Cramer and Gabriel, Introduction a l’analyse des lignes courbes algebriques par Gabriel
Cramer... chez les freres Cramer & Cl. Philibert, 1750.

[219] J. A. Schouten, Tensor analysis for physicists. Courier Corporation, 1989.

[220] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes
3rd edition: The art of scientific computing. Cambridge University Press, 2007.


	Lect37
	Bib (Lec1-37)

